
Surface-Based Microwave Humidity Retrievals over the Equatorial
Indian Ocean: Applications and Challenges

JIANHAO ZHANG AND PAQUITA ZUIDEMA

University of Miami, Miami, Florida

DAVID D. TURNER

Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

MARIA P. CADEDDU

Argonne National Laboratory, Argonne, Illinois

(Manuscript received 19 October 2017, in final form 26 May 2019)

ABSTRACT

The interactions between equatorial convection and humidity as a function of height, at a range of time

scales, remain an important research frontier. The ability of surface-based microwave radiometry to con-

tribute to such research is assessed using retrievals of the vertical structure of atmospheric humidity above the

equatorial Indian Ocean, developed as part of the Dynamics of Madden–Julian Oscillation field campaign.

The optimally estimated humidity retrievals are based on radiances at five frequencies spanning 20–30GHz

and are constrained by radiometer-derived water vapor paths that compare well to radiosonde values except

in highly convective conditions. The moisture retrievals possess a robust 2 degrees of freedom, allowing the

atmosphere to be treated as two independent layers. A mean bias of 1 g kg21 contains a vertical structure that

is removed in the assessments. The retrieved moisture profiles are able to capture humidity variability within

two layer averages at intraseasonal, synoptic, and daily time scales. The retrieved humidity profiles at hourly

scales are qualitatively correct under synoptically suppressed conditions but with an exaggerated vertical

bimodality. The retrievals do not match radiosonde profiles within most of the day prior to/after convection.

This analysis serves to better delineate applications for radiometers. Radiometers can usefully augment more

expensive radiosonde networks for longer-term monitoring given careful cross-instrument calibration. At

shorter time scales, a synergism with additional instruments can likely increase the realism of the retrievals.

1. Introduction

The Madden–Julian oscillation (MJO) is a large-scale

circulation that is more strongly defined by variations

in humidity than temperature (e.g., Sobel et al. 2001;

Zhang 2005). The time scales at which cloud structures

interact with the humidity field are important for dis-

tinguishing the mechanisms encouraging Madden–Julian

oscillation initiation, development, and propagation. One

line of argument holds that clouds respond to externally

imposed changes, primarily the horizontal advection of

moisture (Hohenegger and Stevens 2013; Chikira 2014;

Hannah et al. 2016). Another line of argument attributes

the large-scale column moistening preceding the active

phase of theMJOmore directly to the vertical transport of

moisture by clouds (Bladé and Hartmann 1993; Benedict

and Randall 2007; Powell and Houze 2013; Xu and

Rutledge 2016).A radiative feedback bywhich the vertical

and horizontal moisture transport constructively act to-

gether has also been postulated (e.g., Ciesielski et al. 2017).

This feedback focusesmore on the interaction of the large-

scale circulation with convective variability at smaller

scales, such as through shallow-to-deep convective transi-

tions (e.g., Xu andRutledge 2016) and through the diurnal

cycle (Ruppert and Johnson 2015).

Accurate estimates of the moisture field and its vari-

ability at a range of time scales are essential for studying

convection and its two-way interaction with humidity.

The continuing number of studies devoted to un-

derstanding tropical moisture–convection–radiationCorresponding author: Jianhao Zhang, jzhang@miami.edu
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interactions (e.g., Holloway et al. 2017; Mapes et al.

2017; Chandra et al. 2018, manuscript submitted to

J. Geophys. Res. Atmos., and references therein) argues

for more techniques with which to assess the horizontal

and vertical distribution of moisture. Radiosondes

accurately estimate the atmospheric state, and radio-

sonde networks have demonstrated their value for un-

derstanding and constraining equatorial moisture and

heat budgets (Johnson et al. 2015, and references therein).

Such networks possess a 3-hourly temporal resolution at

best, and the spatial sampling is sparse enough that

significant moisture filaments can be missed (Hannah

et al. 2016). Satellite measurements of column water

vapor path provide improved spatial resolution, but they

have more difficulty resolving moisture variations in the

lower free troposphere because of contributing surface

emission, especially over land.

Another approach, explored within this study, is that

of surface-based microwave radiometry. Microwave

radiometers have a long history of accurate retrievals of

column-integrated water vapor path (WVP) and liquid

water path (LWP) in nonprecipitating to lightly pre-

cipitating conditions (e.g., Zuidema et al. 2005; Turner

et al. 2007), including in tropical environments (Holloway

and Neelin 2009; Kuo et al. 2018), and possess the

advantages of being autonomous, cloud penetrating,

and relatively maintenance-free (Cadeddu et al. 2013).

More ambitious studies have also demonstrated some

potential for microwave radiometers to retrieve vertically

resolved temperature and humidity profiles (Hewison

2007; Löhnert et al. 2007; Blumberg et al. 2015). Löhnert
et al. (2009) examined retrievals based on simulated

clear-sky conditions from Darwin, Australia, and found

their humidity retrieval provided approximately 3 ver-

tical degrees of freedom, with a mean humidity bias of

0.5 gm23. This vertical resolution is far coarser than that

available from radiosondes but nevertheless captures

the vertical moisture variability that is most important

for tropical convective development (Sherwood 1999;

Holloway and Neelin 2009), especially because the

radiometer is preferentially sensitive to the moisture

variations in the lower free troposphere.

Few surface-based microwave radiometry assessments

have been made to date of the moisture structure in the

tropics. Exceptions include Löhnert et al. (2009) and

Raju et al. (2013); the latter is a case study of the water

vapor field surrounding a tropical water spout from a

scanning microwave radiometer. We extend this research

area into the equatorial Indian Ocean and adopt two

approaches for evaluating surface-based microwave

radiometry humidity profiling. One approach examines

the retrieval accuracy itself, whereas the second approach

assesses radiometry’s ability to capture equatorial

humidity variability at a range of time scales. Examined

time scales encompass daily resolutions of the MJO

30–50-day intraseasonal time scale, the diurnal cycle

during more convectively suppressed conditions, and

the more challenging subdaily time scales characteristic

of individual convective events. The shorter time scales

build on the strength of the radiometer to continually

sample every minute.

As part of the Dynamics of the Madden–Julian

Oscillation (DYNAMO) campaign (Yoneyama et al.

2013), the University of Miami’s 22–30-GHz radiomet-

ric microwave radiometer (MWR) was deployed to Gan

Island of the Addu Atoll in theMaldives (0.78S, 73.28E),
where it was collocated with the NCAR S-band/

Ka-band dual-polarization, dual-wavelength Doppler

(S-PolKa) radar (Sahoo et al. 2015). The data for this

studywere collected from 18October 2011 to 14 January

2012. The radiometer’s frequency range is arguably

the most commonly applied in deployed radiometers

worldwide, but it excludes the temperature-sensitive

oxygen absorption band at 60GHz. Radiosonde infor-

mation is integral to both the retrieval and its assessment.

These are provided by the Atmospheric Radiation

Measurement (ARM) MJO Investigation Experiment

(AMIE; Long et al. 2011), which brought the ARM

Mobile Facility 2 (AMF2; Miller et al. 2016) to a location

that is approximately 8.5km southeast of the radiometer.

A detailed description of the instruments and the

radiative transfer model is provided in section 2,

augmented by the appendix. The retrieval algorithms

are introduced in section 3. Section 4 contains several

quantitative evaluations of the accuracy of the profile

retrievals, including a bias analysis and sensitivity tests.

In section 5, the radiometer-derived moisture structure

and its variability at different time scales (diurnal, con-

vective scale, daily mean, and intraseasonal) are evalu-

ated by comparing with radiosonde-derived values.

Section 6 provides a conclusive summary of the lessons

learned from this study and an outlook for the potential

roles of MWRs in future field campaigns.

2. Instrument and model descriptions

a. Radiosondes

The AMF2 launched Vaisala, Inc., RS-92 radiosondes

8 times per day, totaling 763 successful launches from

18 October 2011 to 14 January 2012. The radiosonde

measurements are corrected for a daytime dry bias at-

tributed to solar heating (Wang et al. 2013; Ciesielski

et al. 2014). As expected, the radiosonde temperature

profiles varied little throughout the campaign (Fig. 1a),

with a standard deviation of about 0.58C among the 763

temperature profiles and a variation of,0.58C between
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the mean temperature profiles corresponding to differ-

ent conditions (phases) of the MJO, discussed further in

section 5a (Fig. 1c). These 763 temperature and humidity

profiles provide the a priori information for the humidity

retrieval. Following Löhnert et al. (2004), the 763 ra-

diosondes profiles are first interpolated onto a 53-level

semiexponential height grid, with a vertical grid spacing

of 10m at the surface, decreasing with height to 500m at

14km. The 53 levels establish the vertical grid for the

humidity retrieval.

b. Radiometer

The model PR203090 Radiometrics scanning radi-

ometer possesses 21 channels between 22 and 30GHz,

sampling along different positions on the pressure-

broadened 22.235-GHzH2O absorption line. The utilized

zenith-pointing scans are embedded within a scanning

pattern set to match that of a collocated S-PolKa radar

(Sahoo et al. 2015), and as such had irregular time stamps,

but with data available every minute. The radiometer

maintains its calibration through an automated routine,

whereby observations are gathered at a range of airmass

opacities by varying the elevation angle. The range of

sampled angles also tests for the horizontal homogeneity of

the atmosphere, thereby selecting for clear skies. These

measurements ultimately establish the accuracy of

the temperature of an internal noise diode, with the

instrument noise contributing an estimated root-mean-

square error or uncertainty in the brightness temperature

of 0.3K (Turner et al. 2007).

The continual scanning pattern reaches near-surface

elevations that discourage water accumulation upon the

radome. Further efforts are made to identify precipita-

tion conditions, as drop sizes exceeding 200mm begin to

violate the Rayleigh absorption and scattering assumptions

assumed within the humidity retrieval (Cadeddu et al.

2017). The S-PolKa site lacked direct rain measure-

ments, and the S-PolKa radar did not include a zenith-

pointing stare. Instead, the radiometer measurements

themselves are used to identify rain contamination.

Cases in which the retrieved LWP. 1500 gm22 are not

included in the 30-min averages input into the humidity

retrieval, whereas 30-min LWP averages of .500 gm22

are also subsequently excluded from further analysis.

This metric indicated slightly more precipitation than

the rain gauge at the ARM site, suggesting that it is a

conservative choice. As shown later, most of the LWPs

in the final humidity retrieval dataset were less than

100 gm22—values for which large drop sizes are un-

common (Zuidema et al. 2005).

c. Radiative transfer model

All retrievals rely on iterations of radiances computed

using the Monochromatic Radiative Transfer Model

(MonoRTM), version 5.0, developed by the Atmo-

spheric and Environmental Research Co. MonoRTM

includes line-coupling effects (Hoke et al. 1989) and uses

‘‘MT_CKD 2.5.2’’ for the water vapor continuum and

the Humlicĕk–Voigt line shape (Humlicĕk 1982). Half-

widths of the two main water vapor lines are docu-

mented in Payne et al. (2008). Further details regarding

MonoRTM’s inputs, outputs, and model parameters can

be found in Clough et al. (2005).

3. Method

Humidity profiling using microwave radiometry is

inherently challenging because the retrieval is under-

constrained. Bayesian optimal estimation approaches

incorporate a priori information to help to constrain the

FIG. 1. Mean profiles of (a) temperature and (b) water vapor mixing ratio q with 1 standard deviation (dashed curves) calculated from

763 radiosondes between 19 Oct 2011 and 14 Jan 2012. Also shown is the departure from the mean values of (c) temperature and (d) q as

a function of the MJO phases (as indicated in the color key).
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retrieval solution, and they produce an error estimate as

part of their retrieval (Rodgers 2000). We apply the same

Bayesian optimal estimation approach as in Löhnert et al.
(2004, 2009) and Blumberg et al. (2015). The a priori in-

formation is constructed from the deployment-mean

radiosonde-derived humidity and temperature profiles.

This approach reflects what can typically be done prior

to a field deployment. The column-integrated water

vapor estimates are constructed first and compared with

those derived from radiosondes. This helped uncover a

pointing error that is corrected prior to the humidity

profile retrieval. The column-integrated moisture values

are integrated as a constraint on the humidity profile

retrieval. This is not typically done, but the constraint

improves the subsequent profile retrieval by reducing

compensating variability at different altitudes and im-

proves the representation of the boundary layer moisture

in particular. A flowchart (Fig. 2) facilitates understanding

of the approach described further below.

a. Column-integrated WVP and LWP retrievals

The column-integrated WVP and LWP retrievals are

more robust than the retrieved humidity profiles be-

cause the two column-integrated measures can be fully

constrained using only two brightness temperatures, at

frequencies of 23.834 and 30.0GHz. These retrievals are

performed at approximately 1-min resolution using an

algorithm that is also the basis of the standard ARM

operational retrieval (‘‘MWRRET2’’; Turner et al.

2007). The effective radiating temperature of the low

clouds, to which the liquid absorption coefficient is

sensitive, is established through cloud boundaries set at

800 and 1300m. The cloud base corresponds to the lift-

ing condensation level, and clouds thicker than 500m

are susceptible to precipitation and more likely to be

excluded from the retrievals. Changes of less than 100m

in either the cloud-base height or cloud thickness

will impact the retrieved LWP, but the impact on the

retrieved thermodynamic profile is smaller than the

retrieval uncertainty.

Initial column-integrated moisture retrievals revealed a

moist bias of 0.2 cmwhen compared with values calculated

from the radiosondes. A scrutiny of the accelerometer

data from the level-0 files revealed an offset between

the actual and programmed viewing angles of approxi-

mately 118, reflecting a slanting of the radiometer’s base

after its deployment. The offset is accounted for in the

zenith measurements by a recalibration to a viewing

FIG. 2. A flowchart indicating the column-integrated retrieval (red frames and arrows) and profile retrieval (green frames and arrows). The

postcampaign calibration and quality controls are defined in sections 3a and 3b, respectively.
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angle of 798, referred as ‘‘post-campaign calibration’’ in

the retrieval flowchart (Fig. 2). The subsequent stability

of the radiometer over the course of the campaign is

examined through comparing the clear-sky observed

brightness temperatures with those forward calculated

from the radiosondes (e.g., Löhnert and Maier 2012). A

time series of this difference indicates that the radiom-

eter is otherwise stable (not shown).

The calibration also accounts for a temperature de-

pendence brought by daytime solar heating of the ra-

diometer. This recalibration producedWVPs thatmatch

radiosonde values exceedingly well, with a mean dif-

ference of 0.029 cm, standard deviation of the differ-

ences of 0.166 cm, and correlation coefficient of 0.979

(Fig. 3, blue dots and red dots). A frequency distribution

of the water vapor path retrievals reveals a distinct mode

corresponding to a plateau of 5.6 cm, with an overall

mean of 5.02 cm and a standard deviation of 0.81 cm.

The main difference from the radiosondes occurs at

values of .6 cm, where the screening for precipitation

removes the most moist profiles—a sampling bias that is

common to radiometer applications (Kuo et al. 2018).

Liquid water paths are also retrieved, and they are

subsequently used to indicate the likelihood of rain.

b. Vertically resolved moisture retrievals

The more-complex humidity profile retrievals rely

on the 22.234-, 23.034-, 23.834-, 26.234-, and 30.0-GHz

brightness temperatures. The retrieval vectors, com-

posed of the same 53 levels as the semi-exponentially

gridded radiosonde profiles, exceed the five elements of

the input vector, posing an inherently ill-posed retrieval.

An ill-posed inverse problem disallows a unique solu-

tion, and small errors in the observation can lead to a

different retrieved humidity profile. A scaling of each

iterated humidity profile by the previously retrieved water

vapor path serves as one constraint. Further constraints

rely on the radiosondes, which provide the a priori in-

formation expected by the retrieval. The diagonal ele-

ments of the a priori Sa covariance matrix contain the

variances of the radiosonde water vapor mixing ratio at

each altitude, and the off-diagonal elements contain the

covariances between different vertical levels of the ra-

diosonde humidity profile. The campaign-mean profile

of water vapor mixing ratio is the a priori state vector

Xa and the first-guess input to the profile retrieval X1.

The campaign-mean profiles are chosen for this re-

trieval design, as opposed to a near-in-time earlier

profile, to emulate predeployment conditions for which

only historical datasets or data from previous field

campaigns are available. The campaign-mean temperature

profile is assumed to be constant within the retrieval—an

assumption that we also test. The input brightness

temperature measurements are initially averaged to

30-min resolution, setting the time resolution of the

subsequent humidity retrievals. Details of the optimal

estimation method follow Rodgers (2000) and are pro-

vided in the appendix.

Quality controls include testing for convergence

(see the appendix), excluding input LWPs exceeding

500 gm22, and excluding retrievals with a root-mean-

square of the fit that is greater than 2K. The chosen

LWP threshold is not sensitive to the exact value: 93%

of the LWPs associated with the final humidity retrieval

dataset are ,100 gm22, with an uncertainty of approx-

imately 15 gm22 from instrument noise, far below the

LWP threshold of 500 gm22 (Fig. 4). 75% of the profile

retrievals passed all of the quality controls, and only

these are shown in subsequent analysis and applications.

A further advantage of optimal estimation is that the

retrieval uncertainties can be directly computed as the

mean quadratic error estimate from the diagonal ele-

ments of the covariance matrix for the optimal solution

Sop. Similarly, the number of independent vertical levels

FIG. 3. Time series and frequency distribution of the columnWVP derived by MWRRET2

(blue), as an integration of the profile retrievals (label IPR; yellow), and the radiosondes

(label RS; red).
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is also known directly from the degrees of freedom. The

retrievals possess 2.2 independent degrees of freedom

(see Fig. A1b and the appendix for details), which is less

than the almost 3 that is reported in Löhnert et al. (2009)
over Darwin. One cause may be the use of actual versus

simulated observations, but another explanation may be

that the equatorial atmosphere is more vertically co-

herent (i.e., possesses a higher vertical autocorrelation)

than that of the monsoonal, coastal environment of

north Australia.

Time series of the radiometer and radiosonde moisture

profile retrieval anomalies from their respective means are

shown at 3-h resolution in Fig. 5. Similarities are apparent

between the retrieved and radiosonde profiles. Moisture

variation patterns at 3–5-day time scales and longer are

capturedwell. Themost noticeable difference between the

two panels is an overstated diurnal cycle in January 2012,

the most convectively suppressed time period of the

campaign, within the radiometer retrievals.

The retrieved water vapor mixing ratios q(z, t) are

shown divided by the time-averaged retrieval profile

[q(z, t)/q(z)] in Fig. 6, sorted by the retrieved column-

integrated water vapor path, for both the radiometer

retrievals and radiosonde-derived values. This type of

representation indicates when a vertical level is drier or

more moist than the average. Several well-known fea-

tures are evident, such as a moistening beginning at the

lower altitudes as total-column moisture increases. In-

terestingly, the boundary layer is more moist at water

vapor paths between 4 and 4.5 cm than at WVPs ex-

ceeding 5 cm, evident in both the retrievals and radio-

sonde datasets. We speculate that a column water vapor

of 4.8–5.0 cm may be necessary to support convection

that is deep enough to generate downdrafts capable of

bringing down drier air. Also apparent, by comparing

the spread of the 5–6-cm humidity profiles between ra-

diosondes and retrievals, is that most of the nonconverged/

excluded profiles correspond to the more-saturated at-

mospheres that are more likely to be precipitating.

4. Retrieval assessment

Although there is no bias to the integrated water

vapor values by construction, a vertically varying bias is

apparent in the retrieved humidity profiles (Fig. 7; black

solid curve). The retrievals are too dry below 1.5 km by

up to 1 g kg21, too moist between 1.5 and 5km by up to

1.5 g kg21, and too dry above 5km. These values corre-

spond to maximum differences in the absolute humidity

of 21.3 gm23 near the surface and 1.6 gm23 near 3 km.

Themean bias is relatively smaller when theWVP is less

than 5 cm, and even more for WVPs of less than 4 cm,

whereas the largest biases occur for WVPs of greater

than 5 cm (gray curves in Fig. 7). The vertical structure

does not vary with WVP, and the largest root-mean-

square errors occur between 5 and 7km (Fig. 7; dashed

black curve). Although the biases only slightly exceed

those reported elsewhere (e.g., Raju et al. 2013), the

systematic behavior with altitude invites a search for

a cause.

Several tests were done to attribute and mitigate, if

possible, the cause for the bias vertical structure. One

was to examine the sensitivity of the humidity retrievals

to the temperature profile through varying it by 61

standard deviation (Fig. 8a). Humidity retrievals based

on the warmer temperature profile are more moist be-

low 2km than those based on the drier profile and are

drier between 3 and 6km. This is consistent with a

downward displacement of the weighting function. A

more physically realistic experiment would examine the

sensitivity to temperature variations that realistically

covary with moisture (through associated changes in

latent heat), but the experiment here is enough to in-

dicate that the humidity retrieval is not sensitive enough

to the temperature deviation to explain the overall hu-

midity bias. The bimodal vertical structure of the tem-

perature bias is also at odds with the trimodal structure

of the humidity bias.

Another test examined the retrieval sensitivity to a sys-

tematic bias in the LWP inputs, from, for example, an in-

correct gaseous absorption model (e.g., Zuidema et al.

2005). LWPs are perturbed by 610% in two sets of re-

trievals, yielding a mean difference in water vapor mixing

ratio of approximately 0.2gkg21 (Fig. 8b). This is only

;20% of the humidity biases noted in Fig. 7—also not

enough to explain the bias. The concern that samples

possessing WVPs of greater than 5cm could contain pre-

cipitating clouds is evaluated using only those cases with

FIG. 4. Frequency histogram of the retrieved LWPs, along with

the mean uncertainty (dashed line with times signs) and standard

deviation (error bars).
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FIG. 5. Time series of q-profile anomalies from the mean from (a) the radiometer and (b) radiosondes, at 30-min

resolution. Nonconvergence and precipitation are indicated as white blanks. The rain rate measured at the AMF2

site is indicated in purple.
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LWPs below 1gm22. These are not less biased. Random

LWPerrors introduced by instrument noise will not yield a

systematic impact on humidity profile retrievals.

Another attribution effort examines the water vapor

continuum representation by strengthening the self-

broadened component by 8% and weakening the

foreign-broadened component by 3.4%, based on prior

experimentation (Turner et al. 2009). These modifica-

tions did little to affect the mean bias. No further spec-

troscopic experiments are conducted because of the

limits of the short dataset. Experiments with different

vertical grid spacings also do not reveal any sensitivity to

the vertical grid spacing (see the detailed discussion in

the appendix).

A more illuminating experiment selected carefully

for a subset of clear-sky radiosondes by using the

ARM zenith-pointing 35-GHz cloud radar to screen

for cloud. Forward-calculated brightness temperatures

based on the selected 50 clear-sky radiosondes contain a

slight slope offset when compared with the radiometer

brightness temperatures in four of the five channels

(Fig. 9). After the slope offset is removed from the ob-

servations using a simple linear regression, the mean

bias persists but is reversed in sign (too dry in the low

troposphere and too moist in the upper troposphere).

Given that the change in the slope offset is small, this

most clearly indicates the importance of calibration and

the calibration dataset, as the more restricted clear-sky

radiosonde evaluation dataset applies to a drier envi-

ronment than is typical. For this reason, the original

radiometer brightness temperatures were kept.

5. Humidity profile retrieval applications as a
function of time scale

A question remains as to why the vertical structure of

the bias persists, although the experimentation confirms

the importance of calibration. For the assessment of the

scientific applications of the radiometer retrievals, the

FIG. 6. Profiles of (top) radiometer-retrieved and (bottom) radiosonde water vapor mixing

ratio q(z, t) normalized by the time-averaged value at each vertical level [q(z, t)/q(z)], sorted by

the retrieved WVP. The 08C level is indicated with a horizontal gray dashed line.

FIG. 7. Mean bias (solid black) and RMSE (dashed black) of

retrieved q profiles from the mean of the 763 radiosondes. Gray

curves indicate mean bias profiles as a function of three WVP

ranges (long dashed line for WVP . 5 cm, dashed line for WVP

between 4 and 5 cm, and solid line for WVP , 4 cm).
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mean vertical structure of the bias (Fig. 7; solid black line)

is removed from each retrieved profile. The subsequent

assessments evaluate the moisture structure at four time

scales: that of the intraseasonally varying MJO, daily

moisture changes, as hourly composites centered on strong

rain events, and as a diurnal-cycle composite during a

suppressed (but still convective) phase of MJO.

a. Intraseasonal moisture variability

Time series of two separate layer-averaged moisture

fields are shown, one spanning 1000–700hPa and the

other 700–400 hPa, chosen in light of the approximately

2 available independent degrees of freedom for signal

(Fig. 10). These layers correspond approximately to the

two height maxima in the averaging kernels (Fig. A1c in

the appendix). The two separate layer-integrated mois-

ture retrievals capture the intraseasonal moisture vari-

ability well, with their moisture changes often being

correlated (consistent with the radiosondes) but not al-

ways. For example, from 8 to 9 November, the mid-

troposphere is moistening while the lower troposphere

is drying. In contrast, from 30 to 31 December, the

midtroposphere is drying while the lower troposphere

was moistening, highlighting that humidity variations

can be independently retrieved from the two layers.

The retrievals also capture the mean conditions as-

sociated with an external definition of the MJO phase.

The MJO phases indicate where convection is active

within the global equatorial belt. They are defined by an

index that is based on the near–equatorially averaged

850- and 200-hPa zonal winds and satellite-observed

outgoing longwave radiation data (Wheeler and Hendon

2004). At Gan Island, phases 1–3 correspond to more or-

ganized convection, and phases 4–8 correspond to more

suppressed, isolated convection (Gottschalck et al. 2013).

An extremely low index value is considered fully sup-

pressed (‘‘S’’). Gan Island experienced three MJO events

during DYNAMO (Yoneyama et al. 2013); the phases are

indicated at the top of Fig. 10. The retrievals are shown as

equivalent potential temperatures ue, a commonly used

measure of the moist energy available to tropical convec-

tion that is a function of both moisture and temperature.

Average profiles of ue agree well between the retrievals

and radiosondes (Fig. 11). The relative agreement is

poorest in the boundary layer, where the ‘‘suppressed’’

retrieved profile indicates a high ue and the radiosondes

do not. This is in part a reflection of the use of a constant-

temperature vertical profile, as moister profiles tend to be

cooler, introducing a compensation to ue that is not cap-

tured within the retrievals. Overall, though, it is clear that

FIG. 8. (a) Differences between mean humidity profile retrievals relying on11 and21 standard deviation from

the campaign-mean temperature profile, and (b) differences between mean humidity profile retrievals relying on

input LWPs perturbed by110% and210%. In each case, in addition to the mean result and61 standard deviation

of the results, the 10th-percentile, 90th-percentile, and individual profiles are also shown.
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a network of microwave radiometers could serve well to

monitor large-scale changes in such coarsely resolved

vertical layers.

b. Daily moisture variability

Day-to-day changes in q(z) can reflect either hori-

zontal or vertical moisture advection, and the monitor-

ing of these changes is beneficial for understanding how

moisture interacts with convection at daily time scales

(e.g., Xu andRutledge 2016). The daily changes in water

vapor mixing ratio are calculated from a straightforward

subtraction of daily mean moisture profiles from those

of the previous day, in both the retrievals and radio-

sondes (Fig. 12). Filled color contours show increases

(blue) and decreases (red) in moisture from both the

retrievals and radiosonde measurements. The retrieved

daily changes in water vapor agree well with those de-

rived from radiosondes, both in sign and magnitude.

This is also revealed in the correlation analysis of

Fig. 12c, with the occasional weak correlations occurring

on days when the humidity variability was weak overall,

such as from 23 to 25 October and 17 to 19 December.

Retrieved changes to the humidity profile are also re-

alistic during time periods when these are vertically in-

coherent, such as from 8 to 9 November and 30 to

31December (correlations of 0.87 and 0.86, respectively,

between the retrieved and radiosonde vertical structures).

The boundary layer (approximately 1000–900hPa) mois-

ture varies less than that within the free troposphere, and

the retrievals capture this distinction well. The lack of in-

trinsic moisture variability also helps to explain why the

retrievals near the surface and above 200hPa do not cor-

relate as well with the radiosonde-derived changes as in

the midtroposphere. A recurring pattern of moisture

fluctuation at a period of about 3–5 days (i.e., a drying

event followed by a moistening event) is evident in both

datasets in November and December as noted by Zuluaga

and Houze (2013), although these did not reach statistical

significancewithin a power-spectrum analysis.Overall, this

comparison supports the application of microwave radi-

ometers toward resolving moisture changes at daily time

scales, at a coarse vertical resolution.

c. Moisture evolution relative to convection

A more ambitious goal is to assess if the radiometer

retrievals can capture the evolution of moisture relative

to deep convective events. In a typical evolution (e.g.,

Mapes et al. 2006; Holloway and Neelin 2009), moisture

accumulates first within the boundary layer, which

deepens and reaches into the free troposphere approxi-

mately a half-day before the maximum rainfall. After

the rainfall, the boundary layer weakly dries, with the

drier boundary layer deepening gradually over the

subsequent day. This evolution is also documented for

FIG. 9. Brightness temperatures calculated

from 50 clear-sky soundings selected from

a stringent comparison with cloud radar

measurements vs radiometer measurements

at (a)–(e) five different frequencies. The lin-

ear regression line (solid) and X 5 Y line

(long dashed) are both indicated.
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the 11 events providing the most rain accumulation at

Gan Island using radiosondes and ERA-Interim data

(Zuluaga and Houze 2013). The evolution reflects a sum-

mation of subtle entrainment, mass-flux, and cold-pool

processes (e.g., Tompkins and Semie 2017; Zuidema et al.

2017; Schiro andNeelin 2018) for which vertically resolved

moisture information available at smaller time scales than

those of radiosondes is potentially useful.

FIG. 11. (a) Retrieved and (b) radiosonde mean equivalent potential temperature profiles as a function of MJO

phase: suppressed phase (dashed black), phases 2 and 3 (solid blue), phases 4 and 5 (dashed blue), phases 6 and 7

(red), and phases 8 and 1 (green). At Gan Island, phases 1–3 are more convective and 4–8 are more suppressed.

FIG. 10. Layer-integrated WVP time series of the radiometer retrievals (black) and

radiosonde-derived values (red) for the (top) 1000–700-hPa and (bottom) 700–400-hPa layers.

MJO phases are indicated above each panel. Gray-shaded areas indicate two time periods

during which the layer-averaged moistures differ. Retrieved values are at 30-min resolution.
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A radiosonde-only composite that is based on 8 of the

11 events shown in Fig. 4 of Zuluaga andHouze (2013) is

similar to their larger composite (Fig. 13, bottom panel;

two events precede the radiometer time series, and the

event on 18 November is extreme and dominates the

composite when included). A 3-h running mean is ap-

plied to the radiometermoisture profile retrievals, shown as

anomalies from the mean profile (Fig. 13, top panel). The

corresponding water vapor paths from both the radio-

sondes and retrievals are also indicated, as is the number of

converged retrieval samples (above the top panel in Fig. 13).

The qualitative changes in the moisture field are

captured to some extent by the humidity retrievals, al-

though the time scale is not consistent. Not unexpected,

the composite of the profile retrievals is no longer

realistic close to the time of maximum rainfall, when fewer

converged retrievals are available. This lack of converged

samples also affects the composite of the water vapor

paths calculated from the profile retrievals. Thedifferences

can be interpreted as a vertical offset in the retrieved hu-

midity anomalies, and in particular the boundary layer

behavior is not correct within the retrievals. While fewer

retrievals are realistic close to the time of strong convective

events, the resolution of a vertical structure suggests the

potential for synergism with an additional measurement

such as from a water vapor lidar (Weckwerth et al. 2016),

which, while quickly attenuated by cloud, can still resolve

the lower-level humidity vertical structure well and

thereby help constrain the entire profile.

d. Diurnal-cycle evolution during a suppressed
MJO phase

A last examination is of a diurnal cycle during specific

MJO onset conditions. On two occasions, 7–13 October

and 11–16 November, a large-scale drying anomaly in

the morning is followed by a comparable evening moist-

ening anomaly after clouds begin to develop (Fig. 16 in

Ruppert and Johnson 2015). These time periods are not

overly suppressed, with water vapor paths of approximately

5.5cm, but rather correspond to transition time periods

when the vertical advection of moisture can be construc-

tively interacting with horizontal moisture advection.

FIG. 12. Time series of vertically resolved daily mean difference of q from (a) radiometer-retrieved profiles and

(b) radiosonde profiles, with drying shown in red andmoistening in blue.Also shown are (c) vertical (to the left) and

temporal (to the right) correlation coefficients between the radiosonde and profile retrievals.
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Acomposite is constructed for the 11–16November time

period using the profile retrievals and the radiosondes

(Fig. 14). The radiosondewater vapormixing ratios capture

the same diurnal features as the gridded analysis applied

within Ruppert and Johnson (2015), with even slightly

larger magnitudes reaching 0.5 gkg21. The radiosonde-

derived water vapor paths vary diurnally by approximately

0.2 cm, a variation that is well captured by the retrievals.

Portions of the moisture profile diurnal variability are also

captured, such as the moistening after 1700 local time,

particularly at altitudes above 900hPa, if exaggerated in

magnitude. A boundary layer to midtroposphere drying

starting atmidnight and capping a near-surfacemoistening

beginning after sunrise is evident in the retrieval composite

as well. A weaker moistening above 500hPa, presumably

reflecting large-scale horizontal advection, is also captured

by the retrievals.

The most distinct discrepancy between the two com-

posites is an exaggerated vertical bimodality within the

retrieval composite, with maximum moisture anomalies

reaching 1 g kg21. This is most obvious in the time period

centered around local noon, when a more moist boundary

layer is capped by a drier midtroposphere. The vertical

structure is arguably also evident in the radiosonde

composite, but the retrieval composite exaggerates the

structure by an order of magnitude. The effect of a

systematic afternoon warming reaching 0.4K in the

midtroposphere (Figs. 1 and 4b of Ruppert 2016)may be

aliased into the humidity retrievals shown, but the re-

sults here also point to the underconstrained nature of

the retrieval. In more-suppressed conditions in which

obstruction by cloud is less of a problem, the additional

information from an infrared spectrometer may help to

improve the characterization of the diurnal response

(Turner and Löhnert 2014).

6. Conclusions

Optimally estimated moisture profiles retrieved from

the radiances of a ground-based microwave radiometer

in a tropical environment are evaluated for their ability

to provide insight into tropical humidity variability at

a range of time scales. The retrieved humidity profiles

are constrained by the previously retrieved integrated

water vapor paths, which match those from the radio-

sondes well except in highly convective conditions. The

FIG. 13. (top) Composite time–height section of retrievedmoisture deviations from themean

profile and WVPs of the eight selected rainiest (maximum in rain accumulation) events during

DYNAMO according to Zuluaga and Houze (2013, their Table 3), from 222.5 to 122 h rel-

ative to the maxima in rainfall accumulation. Moist deviations are in blue, and dry deviations

are in red. The column-integratedWVP is indicated by the black dots and is calculated from the

retrieved profiles. Profiles are retrieved at 30-min resolution, and a 3-h runningmean is applied

to the retrievals. The number of converged samples at each time step is shown above the panel.

(bottom) The corresponding radiosonde-derived moisture profile and WVP (black dots).
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moisture retrievals possess about 2.2 degrees of free-

dom, allowing the atmosphere to be treated as two in-

dependent layers. The mean bias in the water vapor

mixing ratio profile is approximately 1 g kg21 relative to

the radiosondes, with the sign of the bias changing with

height. The mean vertical structure of the bias is re-

moved in the applications.

At time scales of at least 1 day, for which the ampli-

tude of the humidity fluctuations in nature exceeds the

uncertainty (Fig. 7), the moisture variability is captured

well in two independent layers (selected to be 1000–700

and 700–400hPa; Figs. 10 and 12). These are adequate

for capturing large-scale moisture changes that are often

highly vertically coherent. The layer-mean values are

also well represented during time periods when the

changing moisture vertical distribution is not coherent.

At these time scales, the autonomous radiometers

can usefully augment radiosonde networks (e.g.,

Johnson et al. 2015), which are often sparse and are

expensive, and add vertical resolution to the satellite

column measures of moisture (e.g., Hannah et al.

2016). The ability to explicitly resolve two layers

holds the potential to evaluate select convection–

humidity relationships at similar scales (Muller et al.

2009; Ahmed and Schumacher 2015). Careful cross-

instrument calibration would be required to ensure a

consistent response by the radiometers to the envi-

ronmental humidity.

At short time scales, within suppressed conditions that

are making the transition to more-convective condi-

tions, the diurnal cycle in the retrieved humidity profile

characterized by the microwave radiometer is qualita-

tively reasonable (Fig. 13), although an exaggerated

vertical bimodality indicates the underconstrained na-

ture of the retrieval. In more-convective conditions, the

retrievals do not match the radiosonde profiles within

most of the day prior to/after the main convective event,

despite the radiometer’s imperviousness to clouds. At

these shorter time scales, synergism with other instru-

ments that are able to resolve the lower-level moisture

in particular, such as lidar and infrared spectrometers,

may be able to improve on the realism of the vertically

resolved humidity retrievals (e.g., Turner and Löhnert
2014; Barrera-Verdejo et al. 2016). Although these

findings are not necessarily new, this study underscores

best practices for incorporating microwave radiometer

measurements into studies of tropical environments, for

which the interactions between tropical humidity and

convection remain an important research frontier (e.g.,

Holloway et al. 2017), with an emphasis on the resolu-

tion of two vertical layers.
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APPENDIX

Optimal Estimation Implementation and Testing

The optimal solution of an ill-posed inverse problem

can be found by iterating the following formulation,

assuming a linear solution applies (Rodgers 2000):
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i11
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1 (KT

i S
21
e K

i
1S21

a )
21
[KT

i S
21
e (y2 y

i
)

1S21
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i
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, (A2)

where Xi is the atmospheric water vapor mixing ratio

q(z) profile being retrieved at iteration i, Xa represents

the a priori information of the campaign-mean radio-

sonde q(z) profile, Sa represents the a priori covariance

matrix, and Se represents the measurement error co-

variance matrix. The Jacobian Ki is calculated at each

iteration by perturbing the q(z) vector level by level as

shown in Eq. (A2), representing the sensitivity of the

forward model to changes in the humidity at different

levels. Values of y are the brightness temperatures mea-

sured by the microwave radiometer, and yi [or F(Xi)]

are the forward-calculated brightness temperatures

from state vectorXi from the radiative transfer model.

The superscripts 21 and T denote matrix inverse and

transpose, respectively.

The iteration in Eq. (A1) should provide an optimal

solution when the quadratic cost function between Xa

and Xi is minimized or, in other words, when the dif-

ference between Xi11 and Xi approaches zero. The

quadratic cost function between Xi11 and Xi, or

d5 (X
i11

2X
i
)TS

op
(X

i11
2X

i
) , (A3)

where Sop is the covariance matrix of the optimal solu-

tion, can be written as

S
op
5 (KT

i S
21
e K

i
1S21

a )
21

. (A4)

We apply a more relaxed convergence criterion than

that recommended in Rodgers (2000), thereby gaining a

higher convergence rate without overly compromising

the quality of the retrievals. The quadratic cost function

d was found to decrease with increasing iteration step

until reaching aminimum, after which the quadratic cost

function increased again. The minimum d is saved as

dmin, indicating the best performance (optimal esti-

mation) of the iterations. As shown in Fig. A1a (solid

curve), the convergence saturates at a dmin of approx-

imately 50, with little gain in relaxing dmin criteria

thereafter, providing a convergence rate of approxi-

mately 82%. A 100% convergence rate was reached

after all of the quality controls were imposed (Fig. A1a,

dashed curve). The off-diagonal elements of Sop repre-

sent the correlation of errors between different levels.

The convergence rate increases slightly when the hu-

midity profile is scaled by the retrieved WVP between

FIG. A1. (a) The accumulative probability distribution diagram of dmin. Values are indicated for retrievals before and after the quality

controls (solid and dashed lines, respectively). (b) Histogram of total (solid) and cumulative (dashed) degrees of freedom as function of

height. (c) Vertical distribution of the averaging kernels, shown for the mean (black solid),61 standard deviation (gray dashed), and the

10th and 90th percentiles (blue and green dashed lines, respectively) of all profile retrievals that pass quality controls (the vertical sum of

the averaging kernels is the DFS).
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iterations. Retrievals with large biases are further ex-

cluded by only keeping the retrievals with root-mean-

squares of the fit of less than or equal to 2K and an

LWP of less than 500 gm22, to minimize the possibility

of precipitation contamination.

Vertical information content is given by the averaging

kernel matrix A, which can be written as

A5S
op
(KT

opS
21
e K

op
) , (A5)

whereKop is the Jacobian calculated at the iterationwhen

optimal estimation (convergence) has been reached. The

rows ofA indicate the vertical resolution (Rodgers 2000),

whereas the trace of A represents the vertical degrees of

freedom, meaning the number of independent vertical

levels that can be retrieved from the observations.

Figure A1b shows that the vertical distribution of the

degrees of freedom for signal (DFS) is centered at ap-

proximately 2.2. The cumulative DFS is given by accu-

mulating values of each element on the diagonal ofA and

reaches;2.2 at 10km. Furthermore, a vertical frequency

distribution of DFS indicates two modes, one centered at

;2km and another centered at ;7km (Fig. A1c). This

also indicates that the optimal estimation approach is

more prone to vary the humidity within 1–3km and

within 5–9km. Of interest here is that this panel suggests

that almost all of the variability inDFS is contained in the

upper troposphere, above 5km.

The measurement error covariance matrix Se only

contains the nonzero elements on the diagonal compo-

nents, whereas the off-diagonal elements are set to zero

since we assume that measurement uncertainties at

different frequencies are independent of each other.

This assumption has been borne out through an inde-

pendent assessment of a similar radiometer at the DOE

Southern Great Plains site (a covariance of 0.002K2

between the 23- and 30-GHz channels). The diagonal

elements assume that each channel’s noise level is 0.3K,

consistent with that of the similarly manufactured ARM

radiometer.

Additional testing of the algorithm’s setup included

manipulation of the vertical grid spacing, which found

minimal resulting differences in the retrievals. A semi-

exponential vertical grid was chosen after taking both

performance and computing efficiency into account.

The choice of the a priori information is another chal-

lenge. The idea to include all sky conditions as the a

priori information aimed to help with the retrievals

under moist conditions, whereas the idea to only use the

clear-sky radiosondes for the a priori information was to

exclude heavily precipitating samples. It is interesting

that the testing of both conditions revealed no obvious

differences in the performance of the retrievals. Another

experiment added surface specific humidity measure-

ments collected from a surface meteorological station at

the S-PolKa site to the observation vector as a potential

constraint on the boundary layer moisture. Only the first

level of the retrieval is impacted by the addition of this

new information, with no improvement to the boundary

layer retrievals. Moreover, the surface humidity mea-

surements did not compare well to the lowest levels of

the radiosondes, which were launched at a different lo-

cation. Thus, the surface specific humidity is not in-

cluded in the retrieval.
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